EEB Seminar: April 11th

This week we welcome Aly Van Natto, Regan Cross, and Chris Eckert.

Dynamic dunes: science, stories, and shifting sands

Ecology is the process of turning nature into numbers, addressing theory-motivated questions with biological systems. Most of this takes place in unique ecosystems, and sometimes we’re so busy collecting data that we lose sight of the forest through the trees. Students in the Eckert lab have been working on the coastal dunes of California for more than 15 years. In this seminar, we take some time to pay homage to the ecosystem that has yielded so many great scientific opportunities.

EEB Seminar: March 28th

This week we welcome Marcel Dorken.

Evolution of plant reproductive strategies

Modular organisms (e.g. plants, fungi, algae) dominate terrestrial and aquatic ecosystems but our understanding of their ecology and evolution lags far behind that of unitary, multicellular organisms (most animals). Central concepts, such as fitness, are not easily applied to modular organisms for which “individuals” can be hard to identify, with further complications for organisms like clonal plants that can transmit somatic mutations to offspring. In this talk I will present a recently completed model of sexual fitness in modular organisms and describe a test of predictions from previous modeling efforts.

EEB Seminar: March 21st

This week we welcome our own Qian Gu.

Living in an (elementally) imbalanced world: Is stoichiometry useful in understanding the structure and functioning of an arctic tundra ecosystem?

Humans are causing major perturbations in global biogeochemical cycles, especially carbon, nitrogen and phosphorus. These changes put ecosystems under considerable stress, making it critical to understand the mechanisms that underpin ecosystem structure and functioning. Ecological stoichiometry (elemental ratios) is a recent theoretical approach that is based on the realization that all organisms are made of the same essential elements, and therefore provides a mechanistic link from the cellular level all way up to the biosphere. In particular, plant stoichiometric homeostasis – the ability of a species to maintain a certain elemental composition despite variation in the elemental composition in the soil – may represent a useful complementary trait to other plant traits in understanding and predicting community structure. I investigated its applicability in arctic tundra ecosystems by determining homeostasis indices for seven common tundra vascular species. I then analyzed how these homeostatic values were related to key aspects of ecological performance, such as plant dominance. Overall, these results will evaluate the potential contribution of ecological stoichiometry to predicting the impacts of environmental changes on arctic tundra vegetation.

EEB Seminar: March 14th

This week we welcome our own Jill Wettlaufer.

Resource partitioning through the seasons: a test of a competitive ability – cold tolerance trade-off among closely-related, seasonally breeding beetles

Understanding the factors that maintain and constrain biodiversity and species coexistence is a major goal in ecology. When coexisting species use similar resources, this leads to the question: Why doesn’t one species use all the resources to the exclusion of all others? Trade-offs may be key in preventing one species from dominating all resources in all environments, thus allowing multiple species to coexist. Such trade-offs may be widespread in nature and play an important role in maintaining local biodiversity, but remain poorly described and understood. In this seminar, I will present evidence of seasonal resource partitioning in closely-related coexisting burying beetles (Nicrophorus) and explore a potential competitive-ability – cold tolerance trade-off.

EEB Seminar: March 7th

This week we welcome our own Eugene Sit.

Examining phenological variation of an invasive plant using a developmental model

My research examines the basis for variation in flowering time in an invasive wetland plant, Lythrum salicaria, using a model of stem development. I present time series data from an ongoing common garden experiment at Queen’s University Biological Station, with families representing populations from across a 1000 km transect of eastern North America. I will also discuss the underlying data science challenges I encountered while analyzing repeated and multifaceted observations of nearly 3600 individuals and solutions with broad utility for other researchers.

EEB Seminar: February 28th

This week we welcome Chelsea Rochman.

The Impacts of Plastic Debris on Aquatic Ecosystems

Plastic pollution is reported in freshwater and marine habitats globally. Hundreds of species, across multiple trophic levels, are contaminated with plastic and effects have been demonstrated across several levels of biological organization. Using recent insights, this presentation will discuss the sources, fate and impacts of plastic in aquatic ecosystems.

Chelsea Rochman is a trained Ecologist with emphases in Marine Ecology, Ecotoxicology and Environmental Chemistry. She is interested in the side-effects of industrialization on the environment and its inhabitants. Her broader research interests regard the ecological effects of anthropogenic contaminants on wildlife and human resources (e.g. water, seafood). More specifically, her current focus is the implications of the infiltration of plastic debris into aquatic habitats. In addition to her academic research, Chelsea participates in policy meetings and working groups to translate scientific research beyond academia.

EEB Seminar: February 14th

This week we welcome the Friesen lab for an open discussion.

For the love of the planet

The International Panel on Climate Change tells us we have less than 12 years to reduce greenhouse gas (GHG) emissions by 45% below 2010 levels to avoid “climate catastrophe”. We are making some baby-steps in this direction, but change is slow. What can we, as time-crunched biologists, do to help generate this magnitude of change, in so little time? The global community has been able to mitigate environmental crises in the past – how did we do it? What makes a successful social revolution? Who are the main generators of greenhouse gases: individuals or industry? And how do we motivate them to change? The Friesen lab will guide a general discussion, with insights from various professionals from academia, government, and nonprofit organizations, with the goal of generating concrete ideas.