Dr. Blake Jones

Bennington CollegeUnderstanding complex sociality: 
Field-based and meta-analytic approaches

Jan 14th 12:30 – 1:30 pm ET

Welcome back! We kick off the Winter EEB Seminar Series next week with Dr. Blake Jonesfrom Bennington College, hosted by the Bonier lab. Dr. Jones studies the underlying mechanisms of development, sociality, learning, and memory in free-living animals. His research integrates theories and techniques from climate-science, ecology, physiology, genetics, and cognitive neuroscience. Tune in next Thursday at 12:30 pm to hear about his work on manakins, social hierarchies, and mate choice copying!
Complex sociality has evolved across the animal kingdom. As such, biologists as early as Darwin have focused on the ultimate aspects of complex social behaviors, such as cooperation and social learning. More recently, integrative approaches in biology have led to a growing understanding of the proximate mechanisms of sociality in a number of diverse taxa. Here, I highlight a few examples of field-based and meta-analytical approaches to better understand how complex social behaviors are mediated and modulated. First, social classes are a common feature of cooperative animal societies, but what determines an individual’s place within the social hierarchy? My colleagues and I investigated this question in the lance-tailed manakin (Chiroxiphia lanceolata), a cooperative bird species with a complex social hierarchy. We found that glucocorticoids, hormones associated with the physiological stress response, positively correlated with and predicted current and future social status. Likewise, we found a similar predictive link between future social status and the dynamics of telomeres, repetitive sequences of non-coding DNA at the ends of chromosomes. Second, female mate choice is a critical component of sexual selection and can be influenced by social information. Female mate choice copying occurs when one female copies the apparent mate choice of another female and has been documented in numerous taxa. Though this social phenomenon has the potential to influence patterns of sexual selection, how widespread is it? And, what are the individual and environmental factors that modulate its effect? We used a meta-analytical approach to discover that mate-choice copying is exhibited across taxa and is strongly influenced by factors both intrinsic and extrinsic to the individual. 


Blake’s work aims to uncover the genetic and physiological underpinnings of complex sociality, cognition, and development in free-living animals. He uses integrative and comparative approaches in the lab and the field to address questions at the forefront of organismal biology. His work is highly collaborative, involving researchers and undergraduates from throughout the US as well as Brazil and Australia. Blake’s work has been funded by multiple National Science Foundation awards, The Nature Conservancy, the Society for Integrative and Comparative Biology, and the American Ornithological Society. He routinely publishes in peer-reviewed, international scientific journals, including Animal Behaviour, Frontiers in Ecology and Evolution, General and Comparative Endocrinology, Hormones and Behavior, and Oecologia. Blake’s teaching style focuses on critical thinking and first-hand experience in the lab and the field. He draws on his diverse experience in research, conservation, field biology, veterinary medicine, art, music, and photography to make biology easily accessible. B.S., James Madison University; Ph.D., University of Memphis; Visiting Research Scholar, Curtin University (Perth, Australia); Postdoctoral Scholar, Florida State University. Blake joined Bennington College in 2020.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: